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Abstract In large field trials, it may be desirable to adjust

for spatial correlation due to variation in soil fertility and in

other environmental factors. Spatial correlation within a

field trial can mask differences in the genotypic values of

clones, consequently reducing the possibility of identifying

superior genotypes. This paper describes a strategy to im-

prove the precision of statistical data analysis of grapevine

selection trials through the use of mixed spatial models.

The efficiency of mixed spatial models was compared with

that of a classical randomized complete block model (with

independent and identically distributed errors). The com-

parisons were based on yield data from three large exper-

imental populations of clones of the Arinto, Aragonez

(Tempranillo) and Viosinho grapevine varieties. The fit of

the spatial mixed models applied to yield data was signif-

icantly better than that of the classical approach, resulting

in a positive impact on selection decisions and increasing

the accuracy of genetic gain prediction.

Introduction

Most grapevine varieties used today originated many

hundreds or thousands of years ago, probably as genetically

homogenous clones. With the accumulation of mutations,

these ancient varieties became heterogeneous. They now

consist of mixtures of genetically distinct clones (geno-

types) with different agronomic and quality traits (Rives

1961).

Quantification of variability within ancient varieties is

very useful, not only because it provides the raw material for

selection, but also because it allows for understanding of the

antiquity of varieties as well as providing good strategies for

the conservation of genetic resources. Consequently, in the

last 25 years, innovative methods for grapevine selection

have been developed in Portugal (Martins et al. 1987, 1990)

involving quantification of genetic variability and mass

selection of genotypes from within varieties.

An efficient study of the genetic variability within ancient

varieties requires sampling of mother plants representative

of that variability, and grafting them in large field trials,

providing experimental populations of clones, preferably

with homogeneous environmental conditions. In Portugal,

however, vineyards are markedly small and geometrically

irregular, with high soil heterogeneity. To overcome these

difficulties and effectively quantify genetic variability and

select superior clones, we should use appropriate experi-

mental designs, such as alpha designs and resolvable row–

column designs (at the beginning of the experimental

process), together with appropriate statistical models for

data analysis, such as mixed spatial models (at the end).

Plant breeding researchers have faced these practical field

experimentation problems for many years, and great efforts

have been made to develop theoretical tools to overcome

them, including experimental designs and models for data
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analysis. Since the introduction of randomized complete

block (RCB) designs by Fisher (1935), many alternative

experimental designs have been developed, especially in the

area of plant breeding initial trials. Among these are the

categories of incomplete block designs (Yates 1936; Patt-

erson and Williams 1976; Patterson et al. 1978), row–col-

umn designs (Nguyen and Williams 1993) and augmented

designs (Federer 1961, 2002; Federer and Raghavarao

1975). In the field of statistical models, new solutions have

emerged in the literature based upon the principles of

neighbour analysis or spatial analysis. These are models that

take advantage of the assumption that neighbouring indi-

viduals will share a similar environment, i.e., models that

take into account the spatial correlation between neighbour

observations (Papadakis 1937, 1984; Bartlett 1978; Wil-

kinson et al. 1983; Besag and Kempton 1986; Cullis and

Gleeson 1991; Zimmerman and Harville 1991; Grondona

and Cressie 1991). Spatial analysis is now widely used in

breeding programs of annual crops (Stroup et al. 1994;

Grondona et al. 1996; Cullis et al. 1998; Smith et al. 2001,

2005) and forest species (Kusnandar and Galwey 2000;

Costa e Silva et al. 2001; Dutkowski et al. 2002; Joyce et al.

2002), but there are no published reports of its use in

grapevine selection.

The present work aims to demonstrate the utility of

mixed spatial models through the following steps: (1)

characterization of spatial dependence of yield in neigh-

bouring plots in large field populations of grapevine clones,

(2) use of mixed spatial models for yield data analysis of

experimental populations of grapevine clones and, finally,

(3) selection of clones with and without inclusion of spatial

autocorrelation in the model.

Materials and methods

Field trials and data collection

Mixed spatial models were applied to yield data from three

experimental populations of clones from the grapevine

varieties Arinto, Aragonez (Tempranillo) and Viosinho.

Data analysis was based on the average yield observed over

several years. These trials were laid out in balanced RCB

designs. Since control of heterogeneity within complete

blocks is best accomplished with a row–column arrange-

ment within each complete block, the plots were located on

a grid (not always regular) of columns by rows. Informa-

tion about the field trials and the yield data collected over

several years is shown in Table 1. Given that we detected

clones which were not of the Aragonez and Viosinho

varieties in their respective experimental populations, only

255 Aragonez clones and 199 Viosinho clones were uti-

lized for data analysis of these two varieties.

The statistical model

The cases studied can be described according to the general

linear mixed model

y ¼ Xbþ Zuþ e

where yn · 1 denotes the vector of observations (phenotypic

values) for yield, bp · 1 is a vector of fixed effects, uq · 1 is

a vector of random effects, Xn · p and Zn · q are design

matrices for the fixed and random effects, respectively, and

en · 1 is a vector of errors. It is assumed that the joint

distribution of (u,e) is multivariate normal, with 0

expectation and

Var
u
e

� �
¼ G 0

0 R

� �

where 0 are null matrices and Gq · q and Rn · n are sym-

metric positive definite matrices and correspond to vari-

ance–covariance matrices of u and e, respectively. The

distribution of the vector y is multivariate normal, with

expectation Xb and variance matrix V = ZGZT + R where

ZT denotes the transpose of Z.

The vector uq · 1 of random effects consists of subvec-

tors uqi�1 (i = 1, 2), each one associated to one random

factor. These subvectors are assumed mutually independent

with variance–covariance matrix Gi ¼ r2
i Iqi

: Therefore, the

matrix G is the direct sum of the variance–covariance

Table 1 Description of field trials

Trial Location No. of

clones

No. of

plants

per plot

No. of

complete

blocks

No. of

rows

No. of

columns

Distance between

centers of adjacent

plots in the

Yield data are the

average of the years

Row (m) Column (m)

Arintoa Sesimbra 247 4 4 61 19 2.75 3.2 1995, 1998, 1999, 2000

Aragonez Reguengos de M. 260 3 5 26 50 2.25 3.75 1999, 2001, 2002

Viosinho Palmela 204 3 5 17 60 2.80 3.60 1992, 1993, 1994, 1996,

1997, 1999, 2000

a The Arinto trial was laid out in an irregular shape (see Fig. 1a) within a rectangle of 61 rows by 19 columns
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matrices of each of the random terms ðG ¼ G1 � G2Þ:
Thus, in all models the vector u includes the genotypic

effects (with variance component denoted by rg
2) and the

block effects (with variance component denoted by rb
2). In

the traditional data analysis of grapevine initial trials, the

block effects are usually considered as fixed. However,

because our purpose is to compare non-spatial with spatial

models, blocks are contiguous and the spatial correlation

extends across the whole field, we considered block effects

as random. Hence, in these studied cases b is a scalar (the

overall mean).

In the classical mixed model R is a diagonal matrix

defined as R = re
2 In, where re

2 is the error variance and In

denotes the n · n identity matrix. In the spatial analysis

approach, matrix R assumes a different structure based on a

decomposition of e into e = e + g, where the vectors e and

g refer to spatially dependent (e) and spatially independent

(g) errors. Furthermore, e is assumed as second-order sta-

tionary so that the correlation between the two plots de-

pends only on the distance between them, and its structure

can be modeled in various ways. Thus, matrix R is defined

as R = r2 P + rg
2 In, where r2 is the spatial error variance

(also called partial sill, r2 > 0), R is the n · n error cor-

relation matrix and rg
2 is the independent error variance

(also called nugget effect, rg
2 ‡ 0).

In this study, three isotropic spatial correlation functions

were considered: spherical, Gaussian and power (a repa-

rameterization of the exponential correlation model). We

also considered the anisotropic power correlation model,

which depends on two parameters, one representing the

correlation between plots in the direction of rows and the

other representing the correlation in the direction of col-

umns. Many authors express the distance between plots as

the difference in the number of rows (or columns)

(Gilmour et al. 1997; Smith et al. 2001). However, we

thought it would be better to express the distance between

plots as the Euclidean distance, in meters. This is a more

acceptable option in isotropic processes. The anisotropic

power model, which uses the Euclidean distance between

plots (in meters), and the AR(1) · AR(1) model (Gilmour

et al. 1997), which express the distance between plots as

the difference in the number of rows (or columns), give

similar results. Table 2 describes the five models fitted to

the yield data of the experimental populations of clones

under study.

Tools for error model identification

The diagnostic of spatial correlation in the errors was based

on the model 1 fit residuals. The plots of residuals against

row and column positions and the plots of the sample

semivariogram [a tool that is widely used in geostatistical

analysis to visualize spatial dependence (Matheron 1963)]

were used. Besides being a good tool for spatial correlation

diagnosis, the sample semivariogram provides the starting

parameter values for the mixed model procedure.

Parameter estimation

Model parameters were estimated by the residual or re-

stricted maximum likelihood method (REML, Patterson

and Thompson 1971), using the Fisher-Scoring algorithm

(Jennrich and Sampson 1976). With residual maximum

likelihood estimates Ĝ and R̂; b and u were estimated by

solving the mixed model equations (Henderson 1975;

Searle et al. 1992). The final solutions can be written as:

b̂ ¼ ðXTV̂�1XÞ�XTV̂�1y; where V̂ ¼ ZĜZT þ R̂ and

ðXTV̂�1XÞ� is the generalized inverse of ðXTV̂�1XÞ; and

~u ¼ GZTV̂�1ðy� Xb̂Þ: In those solutions, b̂ is the empiri-

cal best linear unbiased estimator of b, and ~u is the

empirical best linear unbiased predictor of u (Littell et al.

1996).

Table 2 Description of models 1–5

Models Non-diagonal elements of
Pa

Model 1—classical RCB (classical randomized complete block analysis) 0

Model 2—power (RCB with isotropic power function for spatial correlated errors) q habk k

Model 3—anisotropic power (RCB with anisotropic power function for spatial correlated errors) q habk krow
row q habk kcol

col

Model 4—Gaussian (RCB with Gaussian function for spatial correlated errors) exp � habk k
h

� �2

Model 5—spherical (RCB with spherical function for spatial correlated errors) 1� 1:5 habk k
h þ 0:5 habk k3

h

� �
a Matrix R is the error correlation matrix. q is the coefficient of autocorrelation, and must satisfy | q | < 1 for stationarity. qrow is the coefficient of

autocorrelation between adjacent plots in a row, and must satisfy | qrow | < 1 for stationarity. qcol is the coefficient of autocorrelation between

adjacent plots in a column, and must satisfy | qcol | < 1 for stationarity. habk k ¼ sa � sbkk is the Euclidean distance between the center of the plot

located at sa and the center of the plot located at sb; habk krow ¼ sa � sbkrow

�� is the Euclidean distance between the center of the plot located at sa

and the center of the plot located at sb in row direction, habk kcol ¼ sa � sbkcol

�� is the Euclidean distance between the center of the plot located at

sa and the center of the plot located at sb in column direction. h is the range (distance within which observations are spatially dependent, h ‡ 0)
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Genetic selection

Spearman’s rank correlation coefficient was used to com-

pare predicted genotypic effects rankings between the

classical RCB and spatial models. For genotypic selection,

the ranking of best linear unbiased predictors of genotypic

effects of the clones obtained from the solutions of the

mixed model equations was used. The average of the best

linear unbiased predictors of the corresponding selected

group provided the predicted genetic gain of yield.

Inference for variance parameters and model selection

For each model, the residual or restricted likelihood ratio

test (REMLRT) was used to test the hypothesis that the

genotypic variance component was equal to 0 and the P-

value of the test was half of the reported P-value from the

v2 distribution with one degree of freedom (Self and Liang

1987; Stram and Lee 1994).

When comparing the relative goodness-of-fit among

non-nested models (i.e., among spatial models with dif-

ferent spatial covariance structures and the same matrix X),

the Akaike Information Criterion (AIC) (Sakamoto et al.

1986) and the Bayesian Information Criterion (BIC)

(Schwarz 1978) were used. Smaller AIC and BIC values

indicate a better fit.

Isotropic and anisotropic power models are nested and

may be also compared using the REMLRT. The asymptotic

distribution of the residual likelihood ratio test statistic (k),

under the null hypothesis qrow = qcol, is a v2 distribution

with one degree of freedom.

With the best error spatial covariance structure chosen,

the next step consisted in testing the spatial correlation.

The simplest model (model 1) is a reduced form of the

mixed spatial models. Therefore, the models are nested and

can be compared using not only the AIC and BIC criteria

already referred to, but also the residual likelihood ratio

test. The distribution of the residual likelihood ratio test

statistic (k) consists of mixtures of v2 distributions because

the tested parameters were in the boundary of parameter

space. More precisely, testing k parameters in these con-

ditions involves a mixture of v2 distributions from 0 to k

degrees of freedom (Self and Liang 1987; Stram and Lee

1994; Verbeke and Molenberghs 2000). Consequently, for

the different situations of nested models being compared

we will have the following cases.

• Case 1, to test model 1 vs. model 2 (i.e., testing the null

hypothesis rg
2 = 0 and q = 0). One parameter is on the

boundary of parameter space (rg
2) and the other (q) is

not. The asymptotic distribution of k is a mixture of v2

distributions with unknown degrees of freedom (cer-

tainly less than two).

• Case 2, to test model 1 vs. model 3 (i.e., testing the

null hypothesis rg
2 = 0 and qrow = 0 and qcol = 0). One

parameter is on the boundary of parameter space (rg
2)

and two (qrow and qcol) are not. The asymptotic

distribution of k is a mixture of v2 distributions with

unknown degrees of freedom (certainly less than

three).

• Case 3, to test model 1 vs. model 4, or model 1 vs.

model 5 (i.e., testing the null hypothesis rg
2 = 0 and h

= 0). The two parameters are on the boundary of

parameter space. The asymptotic distribution of k
involves a mixture of v2 distributions with unknown

degrees of freedom (certainly less than two).

Determining the correct asymptotic null distribution

for the likelihood test statistic in this type of nested

mixed models is not straightforward and requires simu-

lation studies. Thus, we decided to use a conservative

solution as a reference: the naive approach of using a

Chi-squared distribution with the number of degrees of

freedom equal to the increase in the number of parame-

ters between the two models. Consequently, for the dif-

ferent situations described above, the naive asymptotic

null distribution of k is a v2 distribution with two degrees

of freedom, for cases 1 and 3, and with three degrees of

freedom, for case 2.

Defining DAICm = AICm – AICmin as the difference

between the AIC value for model m and the minimum AIC

value of the two models under comparison and, similarly,

DBICm = BICm – BICmin as the difference between the BIC

value for model m and the minimum BIC value of the two

models under comparison, a common question is to know

how these differences in adjustment can be considered

relevant. To find a solution for this question, we followed

guidelines suggested by Burnham and Anderson (2002), for

DAICm, and by Kass and Raftery (1995), for DBICm. For

DAICm, a model m with DAICm £ 2 has substantial sup-

port. With 4 £ DAICm £ 7 it has considerably less support,

while with DAICm > 10 it has essentially no support

(Burnham and Anderson 2002). For DBICm, the evidence

against model m is almost negligible when DBICm £ 2,

positive when 2 < DBICm £ 6, strong when 6 < DBICm £
10 and very strong when DBICm > 10 (Kass and Raftery

1995).

Statistical software

All models were fitted in Proc Mixed (Littell et al. 1996) of

SAS version 9.1 (SAS Institute 2003). For graphical tools,

R version 2.2.1 (‘‘Comprehensive R Archive Network’’,

http://www.cran.r-project.org) and its packages Fields

version 2.3 (Nychka 2006) and GeoR version 1.6-5

(Ribeiro Jr and Diggle 2006) were used.
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Results

Spatial correlation diagnosis

The initial strategy used to investigate spatial correlation

within the yield data of the three experimental populations

of clones shows the disposition of model 1-fit residuals in a

grid of row · column positions (Fig. 1). It can be seen that

the residuals are not randomly distributed in the experi-

mental field. Instead, there is clear evidence of some local

trends, showing that the residuals from plots that are closer

together tend to be more similar than those which are

farther apart.

To provide a description of how the residuals are cor-

related with distance, directional empirical semivariograms

of the model 1-fit residuals were obtained for distances less

than 45 m (Fig. 2). In a preliminary diagnosis, there is no

strong evidence of anisotropy, i.e., the correlation between

plots in the direction of rows is similar to the correlation in

the direction of columns. It can be seen that the semi-

variance between residuals increases as lag distance in-

creases, and this is observed within a range of more or less

30 m. At distances greater than this range, the variance

between observations has a tendency to stabilize and spa-

tial correlation tends to be zero. This is particularly obvious

in Fig. 2a, c, e and f, and not as clear in Fig. 2b and d

(column direction in Arinto and Aragonez, respectively).

Furthermore, all semivariograms reveal an evident nugget

effect or independent variance (semivariance remained

quite high as the lag distance approached zero).

The best mixed linear model

According to the shape of the exploratory semivariograms,

several candidate spatial models were fitted to the collected

yield data, as summarized in Tables 3, 4 and 5.

All spatial models fitted yield data better than the clas-

sical RCB approach for the three varieties (smaller values

of AIC and BIC criteria for the spatial models). There were

not large differences amongst isotropic spatial models,

especially between isotropic power and spherical correla-

tion functions. However, the power function seemed to be

the most appropriate to model the error correlation struc-

ture. The models with this correlation function showed the

smallest AIC and BIC values when compared to those

obtained with the Gaussian and spherical models. The

Gaussian model was the least appropriate.

Comparing between isotropic and anisotropic power

functions, the anisotropic power model (model 3) showed a

significantly better fit than model 2 for the Aragonez field

trial (P < 0.05), but comparative criteria (AIC and BIC)

penalized this more highly parameterized model for the

Arinto and Viosinho. However, advantage of isotropic

power model in these latter trials is misleading because the

REML estimates of the spatial variance converged to high

values suggesting that too much weight was given to more

distant pairs (particularly for Arinto and not as clearly for

Viosinho). On the contrary, the REML estimates obtained

with the anisotropic power model for this parameter were

plausible, indicating a better fit for short lag distances,

which is the most important for our objectives.

To model spatial correlation, we therefore chose the

anisotropic power model (model 3) for Arinto, Aragonez

and Viosinho. The AIC and BIC values obtained with this

mixed spatial model were much lower than those from the

classical RCB model (model 1). The differences in AIC

and BIC values were DAIC = 173.5 and DBIC = 162.9 for

Arinto, DAIC = 207.5 and DBIC = 196.9 for Aragonez and

DAIC = 100.8 and DBIC = 90.9 for Viosinho, suggesting

considerable differences in adjustment between the two

models. These results were supported by testing the sig-

nificance of this mixed spatial model through the residual

Fig. 1 Image of spatial patterns

of the model 1 fit residuals in

the Arinto (a), Aragonez (b) and

Viosinho (c) trials
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likelihood ratio test (see considerations in Sect. ‘‘Materials

and methods’’), which allowed us to reject the null

hypothesis (rg
2 = 0 and qrow = 0 and qcol = 0) (P < 0.0001).

According to anisotropic power model (model 3), the

residual maximum likelihood estimates for the spatial

variance were 0.0581, 0.3780 and 0.1128 for Arinto, Ar-

agonez and Viosinho, respectively. The spatial autocorre-

lation coefficients for rows and columns were 0.9506 and

0.9497 for Arinto, 0.9583 and 0.9442 for Aragonez, and

0.9423 and 0.9419 for Viosinho. The independent error

variances were 0.0754, 0.5498 and 0.2788, for Arinto,

Aragonez and Viosinho, respectively. As shown in Ta-

bles 3, 4 and 5, in all cases there was a tendency of the

correlated error term to retain some of the block variance.

In model 3, the sum of spatial and independent error

variances (r2 + rg
2) was higher than the error variance (re

2)

in model 1. Compared with model 1, the independent error

variance was always smaller in model 3, but always higher

than spatial dependent variance. As already mentioned, the

block effects were substantially reduced, particularly in the

Aragonez trial. However, in the Viosinho trial, the block

effects remained significant (P < 0.01) in the presence of

spatial correlation terms, demonstrating the importance of

preserving the design effects in spatial models. Since the

spatial variability of each trial is unique, the possibility of

retaining design information together with spatial adjust-

ment should be considered when searching for the best

model.

Genotypic variance

The residual maximum likelihood estimates of genotypic

variance (rg
2) components were almost identical among

the several fitted models for each population, as well as

highly statistically significant (P < 0.001) in all the

models and for all trials (Tables 3, 4 and 5). This indi-

cated the presence of substantial raw material for genetic

selection.

Ranking of predicted genotypic effects

and genetic selection

Spearman’s rank correlation coefficient was used to com-

pare predicted genotypic effects rankings between the best

spatial model (model 3, anisotropic power correlation

function) and classical RCB model (model 1). The results

are shown in the Table 6. The correlations were 0.964,

0.946 and 0.979 for Arinto, Aragonez and Viosinho,

respectively. This indicates that spatial analysis changed

the ranking of the predicted genotypic effects, which will

have consequences in selection decisions. In order to

visualize these ranking changes, the clones with the highest

predicted genotypic effect for yield resulting from the

classical RCB analysis (model 1) were compared to those

obtained with mixed spatial anisotropic power model

(model 3). It can be seen (Table 6) that spatial analysis

Fig. 2 Directional empirical semivariograms for model 1 fit residuals

in the experimental populations of Arinto, Aragonez and Viosinho (a,

c, e—row direction; b, d, f—column direction)

658 Theor Appl Genet (2007) 115:653–663

123



T
a

b
le

3
M

o
d

el
s

fi
tt

ed
to

y
ie

ld
d

at
a

in
th

e
A

ri
n

to
v

ar
ie

ty
(k

g
/p

la
n

t)

M
o

d
el

s
r̂2 g

(S
E

)

r̂
2 b

(S
E

)

r̂2 e

(S
E

)

r̂2

(S
E

)
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provided smaller standard errors associated with the pre-

dicted genotypic effects (i.e., more accurate predictions)

and produced a different ranking of clones than that ob-

tained with non-spatial analysis (model 1). This means that

some of the clones, ranked as amongst the most productive

in the classical RCB analysis, could be discarded using the

spatial analysis. For example, spatial modulation in Arinto

moved clone 9604 from the 9th to 19th, clone 3704 from

the 12th to 28th and clone 9609 from the 10th to 35th

positions. In Aragonez, clone 0707 dropped from the 1st to

13th, clone 1704 from the 6th to 18th and clone 0524 from

the 10th to 36th positions. In Viosinho, clone 1225 dropped

from the 9th to 20th, clone 0923 from the 12th to 17th, and

clone 1236 from the 14th to 29th positions. These results

will have important consequences in the final composition

of the group of selected clones (i.e., for the final mass

genotypic selection). More precisely, when a 15% pro-

portion of clones are selected as the most productive from

the entire population (37 of 247 clones in Arinto, 38 of 255

clones in Aragonez and 30 of 199 clones in Viosinho),

there is a marked difference in the group of selected clones

between the two statistical analyses. This difference was

found to be in the order of 29.7% (11 of 37), 21.1% (8 of

38) and 10.0% (3 of 30) for Arinto, Aragonez and Vios-

inho, respectively.

Assuming the same proportion of clones for selection

(15% of the population), the predicted yield genetic gain

(the average of the best linear unbiased predictors of

genotypic effects of selected genotypes) was compared

between the two types of analyses. For Arinto, 0.439 kg/

plant was obtained with the classical RCB analysis and

0.457 kg/plant with spatial analysis. For Aragonez,

0.674 kg/plant was obtained with classical RCB analysis

and 0.695 kg/plant with spatial analysis. For the Viosinho

variety, 0.700 kg/plant was obtained with classical RCB

analysis and 0.695 kg/plant with spatial analysis.

Finally, the predicted genetic gains obtained with the

spatial mixed models showed smaller predicted average

standard errors associated with them than those obtained

with the classical RCB model (decreasing by 11.4, 8.5,

6.4%, for Arinto, Aragonez and Viosinho, respectively). As

a consequence, considering the same level of significance,

the spatial models allowed for narrower intervals of pre-

diction, and therefore more accurate prediction of genetic

gains.

Discussion

Yield data collected from the three large grapevine field

trials show the existence of spatial correlation and therefore

accentuate the importance of mixed spatial models to im-

prove efficiency of grapevine selection. In this paper, onlyT
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yield data were analyzed because this agronomical trait

was considered to be of utmost importance for selection

priorities and was therefore the most studied in initial trials.

However, viticulture priorities have recently changed and

selection objectives now include quality traits of the must,

such as sugar content, acidity and anthocyanines. Although

Table 6 Empirical best linear unbiased predictors of genotypic effects ð~gÞ of clones within selected groups, predicted genetic gains obtained

with classical RCB and anisotropic power spatial models and Spearman’s rank correlation coefficient between the rankings of all predicted

genotypic effects of the two models

Arinto Aragonez Viosinho 

Classical model Anisotropic power 
model 

Classical model Anisotropic power 
model 

Classical model Anisotropic power  
model Ranking

Selected
clones 

g~

(kg/plant)
Selected
clones 

g~

(kg/plant)
Selected
clones 

g~

(kg/plant)
Selected
clones 

g~

(kg/plant)
Selected
clones 

g~

(kg/plant)
Selected
clones 

g~

(kg/plant)

1 4108 0.811 4108 0.808 0707 1.001 6505 1.023 1634 1.050 1612 1.001 

2 3605 0.670 3605 0.735 7810 0.984 4201 0.998 1310 0.976 1326 0.947 

3 3502 0.658 3903 0.638 6505 0.983 6112 0.877 1612 0.958 1634 0.899 

4 3903 0.642 0310 0.616 1178 0.923 8302 0.861 1431 0.909 1510 0.891 

5 0310 0.615 2404 0.553 4201 0.873 1703 0.857 1510 0.907 1310 0.874 

6 2404 0.598 3502 0.551 1704 0.826 6709 0.852 1508 0.877 1508 0.820 

7 3113 0.578 4101 0.522 6709 0.801 1605 0.851 1504 0.868 1706 0.798 

8 4101 0.544 3902 0.510 1302 0.788 1302 0.847 1326 0.807 1431 0.783 

9 9604 0.500 3113 0.494 7207 0.780 7810 0.841 1225 0.760 1741 0.779 

10 9609 0.498 8201 0.492 0524 0.772 0386 0.838 1706 0.732 1504 0.768 

11 8201 0.469 0664 0.484 0136 0.770 1178 0.833 1741 0.729 1521 0.705 

12 3704 0.465 4110 0.477 6112 0.769 0136 0.790 0923 0.711 0201 0.685 

13 0664 0.459 3404 0.474 0452 0.714 0707 0.790 1735 0.703 1735 0.672 

14 4110 0.446 1501 0.472 1124 0.713 7207 0.774 1236 0.692 1412 0.652 

15 3902 0.434 8801 0.455 1502 0.695 1110 0.758 1410 0.673 1601 0.641 

16 3504 0.432 0344 0.453 8601 0.687 4504 0.684 1330 0.668 1410 0.635 

17 0640 0.430 3905 0.442 0386 0.674 1124 0.667 1521 0.635 0923 0.634 

18 6707 0.429 6707 0.436 1703 0.649 1704 0.667 1325 0.635 1611 0.634 

19 8801 0.386 9604 0.430 1243 0.631 1158 0.658 1305 0.626 1728 0.628 

20 3403 0.376 0640 0.427 1605 0.626 7311 0.658 1412 0.625 1225 0.626 

21 9603 0.374 2401 0.409 1601 0.626 1603 0.626 1206 0.609 0226 0.626 

22 0503 0.373 3504 0.409 1334 0.622 1243 0.625 1313 0.565 0235 0.620 

23 3404 0.360 9210 0.407 0618 0.619 7801 0.616 1243 0.563 1243 0.620 

24 3204 0.352 6116 0.406 1158 0.616 1336 0.612 0201 0.559 1313 0.600 

25 0517 0.350 0498 0.392 7801 0.597 0314 0.609 0235 0.540 1325 0.593 

26 2019 0.348 8807 0.390 6210 0.584 1218 0.605 1328 0.536 1330 0.568 

27 6116 0.348 0223 0.388 6309 0.567 8601 0.601 1411 0.528 1206 0.541 

28 8807 0.347 3704 0.387 9208 0.554 1334 0.590 1245 0.523 1305 0.541 

29 9005 0.344 9610 0.384 8306 0.554 8809 0.584 1702 0.521 1236 0.528 

30 2403 0.338 9606 0.383 8302 0.542 6510 0.575 1611 0.518 1328 0.527 

31 8007 0.333 3901 0.378 0714 0.530 6210 0.569     

32 1501 0.333 3910 0.363 1117 0.522 1601 0.566     

33 8204 0.333 4107 0.355 0513 0.521 0452 0.547     

34 3905 0.319 0244 0.352 1511 0.518 7502 0.520     

35 0344 0.318 9609 0.348 1336 0.506 7907 0.518     

36 0315 0.316 1632 0.343 7502 0.502 0524 0.517     

37 0498 0.316 0483 0.340 7907 0.498 1502 0.517     

38     1276 0.495 9208 0.506     

Genetic gain 
(kg/plant) 

(SE) 

0.439 
(0.158) 

0.457 
(0.140)

0.674 
(0.329) 

0.695 
(0.301)

0.700 
(0.250) 

0.695 
(0.234) 

Spearman’s rank correlation, 
classical RCB: anisotropic power 

0.964    0.946   0.979 

SE asymptotic standard error of prediction

The underline identifies some clones that change their ranking according to the fitted model
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the evaluation of traits in the must is laborious in large

experimental populations, collection of data is currently

underway. In the future, the adoption of mixed spatial

models should also be tested and applied to those traits.

Given that the objective of these trials was to select

groups of clones to be grown as mixtures (mass genotypic

selection), we considered it adequate to base our analysis

on the average yield observed over several years, without

taking into account the repeated measures nature of the

data. In the next cycle of selection (clonal selection), the

chosen groups of clones will be submitted to further

analyses, involving plantation and data collection in sev-

eral multi-environment trials. In this case, individual clones

will be selected and recommended for specific regions or

conditions and therefore patterns of behavior over years

and locations will be extremely important to consider.

In respect to adjustment for spatial variability, the

anisotropic power function was chosen for all the three

field trials. When compared to what is currently observed

with other crops, where the modulation of e as a first order

separable autoregressive process [AR(1) · AR(1)] is rec-

ommended (Gilmour et al. 1997; Cullis et al. 1998; Smith

et al. 2001), our results reinforce the broad adequacy of

this type of spatial structure in field experiments.

Contrary to what is usually described for annual crops,

where most (or all) of the error component is spatially

dependent (only e is included and g corresponds to mea-

surements errors and is ignored), our grapevine selection

trials show a strong nugget component. Taking into con-

sideration the residual maximum likelihood estimates for

model 3 in the Arinto, Aragonez and Viosinho trials, this

independent error component represents 56.5, 59.3 and

71.2% of the total error variance. This is in close agreement

with previous results obtained in forest trials (Kusnandar

and Galwey 2000; Costa e Silva et al. 2001; Dutkowski

et al. 2002) and can be justified by specific conditions

associated with the cultivation of vines, some of which are

also observed in forests: marginal soils as well as highly

heterogeneous topographical, physical and chemical con-

ditions; artificial plant management, including grafting,

intense pruning and recurrent treatments for fungi, insects

and weeds; and average plot yield based on few plants. In

sum, the strong non-spatial component of the error variance

is essentially due to these conditions, with measurement

errors being a negligible part of this component.

When judging the significance of the anisotropic power

model, the high values of the test statistic (k = 179.5,

k = 213.5, k = 106.8, for Arinto, Aragonez and Vios-

inho, respectively) clearly show that the null hypothesis

(H0: rg
2 = 0 and qrow = 0 and qcol = 0) must be rejected

(P < 0.0001). Furthermore, such high values of the test

statistic confirm that the naive approach (i.e., considering

the asymptotic distribution of the likelihood ratio test

statistic as a Chi-squared distribution with three degrees of

freedom) is applicable and does not cause misinterpretation

in the present case. However, this application may be

problematic in cases where the test statistic results in low

values, since small values of k could cause the non-rejec-

tion of the classical RCB model.

As expected, the mass genotypic selection and the dif-

ferences in the reduction of predicted standard error be-

tween the classical RCB and spatial analyses are more

discrepant when the effects of spatial variability are higher,

as seen for Arinto and Aragonez. Consequently, failure to

account for spatial correlation and ignoring some inherent

structure in the error covariance matrix can increase the

risk of confounding genotypic effects of individual clones

and hinder genetic selection.

The simple RCB designs used in our experiments are

typical of the designs used in Portugal some years ago. As

is well known, RCB designs are not well suited to exper-

iments with many genotypes. There are other more

sophisticated designs, such as incomplete block designs

and resolvable row–column designs that can successfully

account for much of the field spatial heterogeneity. Their

application in grapevine initial trials is desirable and

studies for demonstrating their efficiency in these experi-

ments are clearly opportune. In the meantime, there are

many RCB-design grapevine trials in the field, from which

data continue to be collected. Spatial modeling provides an

important approach for the analysis of such data.

In conclusion, we hope that the results presented here

encourage the exploration and the usage of mixed spatial

models for data analysis, as a general complement of good

experimental design strategies, in order to improve the

efficiency of all processes of grapevine selection.
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